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It is generally assumed that decagonal quasicrystals show periodically arranged

atomic layers only on net planes perpendicular to the tenfold axis and

quasiperiodically arranged ones parallel to it. However, there also do exist only

slightly puckered atomic layers that are periodically arranged and inclined to the

tenfold axis. They coincide with the net planes of the periodic average structures

of the decagonal phase and are related to the strongest Bragg re¯ections. Since

they link quasiperiodic and periodic directions, inclined net planes may play a

crucial role for growth and stabilization of decagonal quasicrystals. In fact, it is

shown how ideal quasiperiodic long-range order and in¯ation symmetry allow

for the existence of inclined net planes with small corrugation and reinforce the

relation with the periodic average structures.

1. Introduction

Crystal structures can be resolved into sets of N in®nite stacks

of atomic layers on net planes (lattice planes) �hkl� with

spacing dhkl. Each in®nite stack contains the translation set of

one of the N atoms per unit cell. The atoms on a single net

plane occupy the nodes of a two-dimensional (2D) sublattice

of the crystal lattice. In many cases, the relation holds that the

larger the spacing dhkl between net planes of a stack the higher

is the net plane's atomic density and the stronger are the

related Bragg re¯ections hkl. In the common case that the

strongest attractive interactions are between densely packed

atoms, these net planes are of high morphological importance

(Donnay & Harker, 1937). Strong Bragg re¯ections mark also

those net planes that strongly re¯ect conduction electrons

leading to the formation of pseudogaps in the electron density

of states (see e.g. Ashcroft & Mermin, 1976).1

For quasicrystals, the situation is somewhat different.

Owing to the lack of periodicity and of a lattice, there cannot

exist any lattice planes. However, stacks of net-plane-like

`dense' atomic layers have also been identi®ed in quasicrystals

such as icosahedral Al±Mn±Pd (Boudard et al., 1992), for

instance. The spacings between these layers, however, follow

quasiperiodic sequences. Thus, the sets of symmetrically

equivalent stacks of net planes (for quasicrystals the term

`lattice plane' seems to be inadequate) form 3D quasiperiodic

hexagrids (cf. Levine & Steinhardt, 1986; Socolar & Stein-

hardt, 1986). The morphology of icosahedral quasicrystals,

point group m�3�5, is characterized by special crystal forms with

low Miller indices such as the pentagon-dodecahedron �01��
or the rhomb-triacontahedron �111� (cf. Jaszczak, 1994, and

references therein).

What is the situation in the case of decagonal quasicrystals

(DQC)? The structure of DQC can be described geometrically

(not crystal-chemically!) as periodic stackings of quasiperiodic

atomic layers (cf. Steurer & Haibach, 1999a, and references

therein). Thus, one obvious set of net planes is formed just by

the stack of quasiperiodic layers itself. These may be regarded

as `lattice planes' in a proper sense. Additionally, ®ve

symmetrically equivalent stacks of net planes perpendicular to

the quasiperiodic plane can easily be identi®ed. The traces of

such net planes may correspond to the Ammann lines in a

Penrose tiling (Levine & Steinhardt, 1986; Socolar & Stein-

hardt, 1986), for instance. Ammann lines have the property

that they cut the two unit tiles in the Penrose tiling always in

the same way as lattice planes do with the unit cell of periodic

crystals. The interplanar spacings follow a quasiperiodic

sequence. The well known decaprismatic equilibrium

morphology of DQC, point group 10=m mm, re¯ects the

morphological importance of these net planes. In summary,

DQC show sets of net planes orthogonal to the periodic axis

with periodic spacing and other sets orthogonal to the quasi-

periodic plane with quasiperiodic spacing. Owing to this

strong characterization, each of these sets of net planes

contains exactly all the atoms in the quasicrystal. Hence the

electron density and the atomic packing density on such

planes is in inverse ratio with their interplanar spacing.

1 It is still not completely clear to which degree the Bloch-wave picture can
be applied to electrons in a quasiperiodic potential, but there are good
indications in this direction (Huang & Gong, 1998). This is probably the
foremost issue for the comparison between periodic and aperiodic long-
range order because it will clarify to what extent in¯ation symmetry can
substitute periodic translation symmetry and allow for extended electron
states.
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The simple decaprismatic equilibrium habitus of DQC is

well known. However, the growth morphology visible on tiny

needle-like crystals of DQC is characterized by many facets

inclined to the tenfold axis additionally to the common

decaprism faces (Fig. 1). These facets correspond to planes

relating periodic and quasiperiodic directions and indicate the

existence of dense atomic layers in DQC on net planes

inclined to the tenfold axis. Evidently, they are stable

substructures, stable enough to be morphologically important.

Their analysis is not straightforward because planes cutting

the tenfold axis periodically cannot cut the quasiperiodic

plane quasiperiodically at the same time and vice versa.

Hence, it is impossible to have all the atoms exactly on a set of

planes. We will however show how, allowing for a small

amount of corrugation, this condition may be achieved.

The following discussion is based on the concept of `per-

iodic average structure of quasicrystals' (Steurer, 1999;

Steurer & Haibach, 1999b; Steurer, 2001). The results allow us

to determine the correlation between quasiperiodic and

periodic directions in DQC. This in turn is useful to interpret

the height distribution of terraces in surface studies, to ®nd

diffusion paths, to understand the growth morphology, glide

systems and crack propagation in deformation experiments

and, last but not least, to have a further insight on the stability

of DQC. In fact, currently the structural stability investigation

has been mostly con®ned within the quasiperiodic planes with

little or no investigation of their relation to the 3D crystal to

which they physically belong.

2. Discussion

2.1. Where are the net planes?

The prototype DQC on which our analysis is based is the

basic decagonal phase Al71Co7Ni22. For an introduction into

the crystallography of quasicrystals, see, for instance, Steurer

& Haibach (1999a). This phase is characterized (Cervellino

et al., 2001) by the quasilattice parameters a � 3:757,

c � a5 � 4:0855 AÊ ; there are two inversion-related quasi-

periodic layers per c period, space group P105=mmc.

ar � 2�a=5 � 2:432 AÊ is the edge length of a Penrose unit tile

whose vertices cover all atomic sites and also the minimal

nearest-neighbour atomic distance; � � 2 cos�=5 �
�1� 51=2�=2 � 1:618 . . . is the golden mean. The parameters a

and c are just the inverse of the lengths (i.e. the physical space

projection lengths) of the reciprocal-space vectors �10000� and

�00001�, respectively.

The existence of net planes in a DQC can best be checked

on the two characteristic 2D structure projections upon the

(x1,x3) and the (x2,x3) planes (Fig. 2; x1, x2, x3 are parallel- and

x4, x5 are perpendicular-space Cartesian coordinates, x3 is

along the periodic axis with period c). Looking under grazing

incidence, it is possible to notice other planes besides the

obvious ones parallel or perpendicular to the tenfold axis. The

�01101� and the ��1�1112� inclined net planes, for instance, are

easily identi®ed. These planes are perpendicular to the re-

ciprocal-space vectors H1 � �01101� and H2 � ��1�1112�,

Figure 1
(a), (b) Growth morphology of tiny decaprismatic needles of decagonal
Al±Co±Ni (courtesy of A. P. Tsai). (c) Facetted pore in decagonal Al±Co±
Cu (courtesy of B. Grushko). The needles and the pore show beside the
decaprism faces f100�10g many facets inclined to the tenfold axis (i.e. the
needle axis).



respectively, corresponding to very strong Bragg re¯ections

(Fig. 3). Their traces form angles �01101 �
arctan��a5=�3ÿ ��2ar� � 60:388 . . . and ��1�1112 �
arctan��a5=�3ÿ ��3=2ar� � 59:138 . . .� with the positive x1 and

x2 axes, respectively. Other net planes, similarly associated

with strong Bragg re¯ections (cf. Table 1), can be found in the

same way.

Thus, there exist not only inclined but at the same time

periodically arranged net planes in DQC. Their structure can

be understood and systematically described in terms of the

`periodic average structure of quasicrystals' (Steurer, 1999;

Steurer & Haibach, 1999b; Steurer, 2001). It has been shown

that all quasiperiodic structures ful®lling some conditions have

periodic average structures. It is necessary that the quasiper-

iodic structures admit a ®nite-dimensional embedding super-

space such that the actual structure may be thought of as an

irrational section of a periodic hypercrystal in superspace.

Furthermore, the structure needs to be described in perpen-

dicular space by a ®nite density (we may think of it as a

probability density), constant or smoothly varying, supported

on appropriate ®nite convex polytopes (known as the atomic

surfaces). It has been shown that convexity of the atomic

surfaces is also a necessary and suf®cient condition to have

in¯ation symmetry (MasaÂkovaÂ et al., 1998, 2000; Berman &

Moody, 1994),2 which is another of the substantial features

characterizing most known quasicrystals. Hence, by means of

these two properties, we may distinguish neatly between

(possibly disordered) on-average-ideal quasicrystals, having

convex atomic surfaces and smooth probability density

(probability values between 0 and 1 indicating structural

disorder), and random tilings in their common `strong'

acceptance in which either the probability density is sharply

varying on fractal atomic surfaces or, even more extremely,

without any superspace embedding.

Employing the higher-dimensional approach, average

structures can be obtained by oblique projection of the

hypercrystal structure related to the quasicrystal (Figs. 2a and

2b). Appropriate projection directions, leading to different

unit-cell dimensions of the average structure, depend on

position and size of the atomic surfaces in the nD unit cell.

Each atom of the quasiperiodic structure is assigned to one

projected atomic surface of the average structure. However,

depending on the type of oblique projection and shape of

atomic surfaces, not every projected atomic surface of the

average structure is assigned to exactly one atom of the

quasiperiodic structure.

Based on the `periodic average structure' approach, it is

straightforward to ®nd the net planes related to the densest

atomic layers. These are simply the low-indexed lattice planes

of the average structure itself. The atomic layers occupying
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Figure 2
Structure of decagonal Al±Co±Ni (Cervellino et al., 2001) projected onto
(a) the (x1, x3) plane and (b) the (x2, x3) plane. The traces of net planes
perpendicular to these planes are shown. The rectangles with edge
lengths S and F3, and L and F4 are the basic building units of this
projection. In the lower part of the ®gures, the corresponding (x1, x4) and
(x2, x5) plane, respectively, are depicted to illustrate the relationship
between the parallel (x1, x2, x3) and the perpendicular space (x4, x5) as well
as the oblique projection directions to obtain average structures ASÿ1
and ASÿ2. The fundamental unit of size L � L0 � 3c contains just one
stack of three large pentagonal prisms with TM at the corners
(dTM±TM = 4.625 AÊ ).

2 The notion of convexity is a geometric one, hence it can be rigorously applied
only to idealized atomic surfaces having constant probability density P � 1.
However, the concept can be easily extended to atomic surfaces having non-
constant but smoothly varying probability density P � 1. Given two points A,
B of a given atomic surface [with P(A) > 0 and P(B) > 0] and any point C on
the segment AB, we can de®ne the atomic surface to be statistically convex if C
belongs to the same atomic surface and P(C) > min{P(A), P(B)}.
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these planes are not perfectly ¯at. Their corrugation, i.e. the

maximum distance of the atoms to the respective plane, is

determined by the dimensions of the projected atomic

surfaces. We will in the following consider two important

average structures between the many possible ones. The ®rst

periodic average structure (ASÿ1) is obtained by the kernel

(01010) for the oblique projection upon the (x1,x3) plane, and

by the kernel (11011) for the oblique projection upon

the (x2,x3) plane. This leads to the average structures with

lattice parameters aASÿ1
1 � 5ar=�2�2� � �3ÿ ��2ar=2 � 2:322

and aASÿ1
2 � �3ÿ ��3=2ar=�2�� � 1:221 AÊ (Fig. 4).

Under certain conditions, the decagonal phase transforms

into the � phase (cf. the discussion in Steurer, 1999, and

references therein).3 The geometrical relationships between

these two phases becomes clear when another average struc-

ture (ASÿ2) is used with lattice parameters aASÿ2
1 �

5ar=�
3 � �3ÿ ��2ar=� � 2:870, aASÿ2

2 � 5ar=��3ÿ ��1=2�2� �
ar�3ÿ ��3=2 � 3:950 AÊ . One sees easily that the net planes of

the DQC and the � phase are parallel (Figs. 4b and 4d). Much

more, the average structure ASÿ2 of the DQC coincides with

the CsCl-type structure of the � phase itself.

2.2. Structure of net planes

In the case that a net plane contains all atoms of the

quasiperiodic layers within one translation period, there must

be a one-to-one relationship between the atoms of the layers

and the atoms of the net plane. If the corrugation of the

inclined atomic layers is neglected, the structure of the net

plane then corresponds just to a projection along x3 of the

quasiperiodic atomic layers in x3 � 1=4 and x3 � 3=4 upon the

net plane. This is illustrated in Fig. 5(a) for the net plane

(01101). The pentagonal structure motifs formed by transition

metals (TM), with edge length ar��3ÿ ��1=2 � 4:625 AÊ , are

drawn in the atomic layer at x3 � 1=4 (Fig. 5b). The same TM

pentagon is seen distorted in the net plane �0�1�101� owing to

the oblique projection upon it (Fig. 5a). The face form {01101}

describes the pyramid faces of the unit polyhedron, a pen-

tagonal bipyramid with the TM pentagon as base and of total

height 3c. This unit polyhedron is also found in the approxi-

mants of decagonal Al±Co±Ni (cf. Steurer, 2000).

The TM pentagon is also the smallest structural feature that

can be considered ideally in¯ation-invariant4 on scaling

(upwards) by integral powers of �. The values of the lengths

shown in Fig. 5 are, respectively, S � ar�
2�3ÿ ��=2,

L � �S � ar�
3�3ÿ ��=2, S0 � ar��3ÿ ��1=2, L0 � �S0 �

ar�
2�3ÿ ��1=2. The values of L and L0 correspond just to the

dimensions of a projected large pentagon (Fig. 5b) upon the

(x1,x3) and the (x2,x3) planes, respectively. We will see how the

average structures and the net planes are strictly related to

these important structural features.

Figs. 2(a) and 2(b) show that the projected structure can be

broken down into rectangular unit cells with widths S, S0, L, L0,
and heights F3c, F4c. F3, F4 are Fibonacci numbers, de®ned

recursively by F0 � 0, F1 � 1, Fn�1 � Fn � Fnÿ1. The trace of

the net plane (01101) inside these rectangles in the (x1,x3)

plane is very close to the respective diagonal vectors

s1 � �S;F3c� � �ar�
2�3ÿ ��=2; 2c� and l1 � �L;F4c� �

�ar�
3�3ÿ ��=2; 3c�. The trace of the net plane ��1�1112� in the

(x2,x3) plane is correspondingly close to s2 � �S0;F3c� �

Table 1
The 16 strongest re¯ections of decagonal Al71Co7Ni22.

Listed are the 5D re¯ection indices H � �h1h2h3h4h5�, the corresponding indices on the reciprocal bases of four periodic average structures, the structure
amplitudes jF�H�j, the net plane spacings dH and the angles � between �H�, the normals to the net planes, and the tenfold axis �00001� .
H HASÿ1 HASÿ2 HASÿ3 HASÿ4 jF�H�j dH (AÊ ) � (�) Comments

00002 002 002 002 002 91.9 2.043 0 || to base face
0�1�101 101 69.4 2.019 60.4 || to icosahedron edge
00004 004 004 004 004 54.4 1.021 0 || to base face
11�1�10 010 46.1 1.221 90 || to lateral prism face
0�1�103 103 46.1 1.175 30.4 || to pentagon edge
11�1�12 012 41.6 1.048 59.1 || to decagon edge
100�10 010 37.6 1.975 90 || to observed lateral prism face
100�12 012 34.5 1.420 46.0 || to decagon edge
�1�1�1�10 100 28.8 3.757 90 || to lateral prism face
�1�3�3�11 101 28.6 0.867 77.8 || to lateral icosahedron face
�1�1�1�12 102 26.7 1.795 28.5 || to pentagon edge
00006 006 006 006 006 25.6 0.681 0 || to base face
�1�2�2�12 102 24.9 1.174 54.9 || to pentagon edge
21�1�20 010 24.5 0.754 90 || to lateral prism face
�1�2�2�10 100 24.5 1.435 90 || to lateral prism face
11�1�14 014 24.2 0.783 39.9 || to decagon edge

3 Particularly interesting for the relation with the DQC growth mechanism is
the fact that the � phase has also been found as phase transformation product
on the surface of DQC (Zurkirch et al., 1998; Shimoda et al., 2000, and
references therein).

4 This is related to the fact that a Penrose tiling of edge �3ar has been found
(Cervellino et al., 1998) to have structural relevance, in the sense that (a) on
such a scale a tiling can ideally represent the DQC but not at a lower scale
(particularly at the bond-length scale, with tile edge ar) because of structural
disorder; (b) accordingly, in¯ation symmetry is ideally ful®lled from this scale
up. Accordingly, the named pentagon is the �3-in¯ated version of the smallest
coordination polygon induced by this crystal's atomic surfaces. As it has edge
length 0.928 AÊ , only one vertex of this minimal pentagon can be occupied
(P< 1=5), while the �3-in¯ated pentagon is fully occupied (P � 1). It is not
surprising that the generalized (xi, x3)i = 1,2 in¯ation operation �̂n (see text) will
force the same `natural' minimal scale.



�ar��3ÿ ��1=2; 2c� and l2 � �L0;F4c� � �ar�
2�3ÿ ��1=2; 3c). Its

maximum distance is given by the boundaries of the projected

atomic surfaces of the average structure of the quasiperiodic

structure. This is the consequence of the following corre-

spondence principle: if the quasiperiodic structure and its

average structure are superposed then all vertices of the

quasiperiodic structure fall inside the projected atomic

surfaces of the average structure. If the vertices of the quasi-

periodic structure are now decorated with the projected

atomic surfaces of the average structure then all lattice nodes

of the average structure fall inside the now quasiperiodically

distributed projected atomic surfaces.

Consequently, the �n scaling operation can be extended to

the (xi,x3)i=1,2 planes. The (x1,x2)-projected structures are

known to be invariant under �n scaling; the x3 direction is

periodic in c and this excludes irrational scaling. However,

scaling by integer numbers is allowed and the Fibonacci

numbers are integers. Their remarkable properties

limn!1 Fn=Fnÿ1 � � and �n � Fn� � Fnÿ1 allow us to rede®ne

the �n scaling operation �̂n as �̂n : �x; zFmc� ! �x�n; zFn�mc�.
Consider now scaled sequences of vectors (n � 0; 1; . . .):

vn�x; z;m� � �̂nv�x; z;m� � �̂n�x; zFmc� � �x�n; zFn�mc�. Put

x � S, z � 1, m � 3 and the ®rst two terms of the sequence

will be s1 and l1. In the same way, with x � S0, z � 1, m � 3, we

obtain a sequence having s2 and l2 as the leading terms.

Consider now the associated sequence of angles

'n�x; z;m� � arctan�zFn�mc=x�n). Owing to the properties of

the Fibonacci numbers and the numeric relations �2 � � � 1

and 5 � �3ÿ ��2�2, we can write:

��x; z;m� � lim
n!1

'n�x; z;m�
� lim

n!1
arctanfza5=�x�ÿm�� � Fn�mÿ1=Fn�m��g

� arctanfza5=�x�ÿm�� � 1=���g
� arctanfza5=�x�1ÿm�3ÿ ���g:

So, ��S; 1; 3� � arctanfc=�S�ÿ2�3ÿ ���g � arctan�c=aASÿ1
1 �,

and, similarly, ��S0; 1; 3� � arctan��c=2�=aASÿ1
2 �. The n!1

limit slopes of the vn vectors coincide visibly with the {101} and

{021} lattice planes of ASÿ1. Moreover, it is easy to see that

��S; 1; 3� � �01101 and ��S0; 1; 3� � ��1�1112, so the limit slopes

coincide with the considered DQC net planes. As a conse-

quence of in¯ation symmetry, every vector5 vn is an inter-

atomic vector because the leading terms are so. This allows

one to determine the relation of atoms belonging to any given

structure motif with the DQC net planes.

It is clear that mathematically ¯at atomic layers are not

possible in a DQC in directions other than parallel or

perpendicular to the quasiperiodic layers. This is a conse-

quence of the fact that the projected atomic surfaces of the

average structure are not point-like but extended objects. The

considered net planes must necessarily be corrugated. The vn

vector sequences allow the determination of the maximal

corrugation. Set the origin of the vn vectors on an atom lying

on the trace of the corresponding net planes. The vn vector tips

will be on atoms belonging to the same (in¯ated) structure

motif. We can calculate the distance dn of these atoms from

the net plane trace. It is dn � jjvnjjj sin�'n ÿ��j; clearly, jjvnjj
goes as �n for n!1. We will show that |sin ('n ÿ�)| goes as

�1=��2n for n!1, so that dn goes as �1=��n. In fact, putting

tan�'n� � �1� "n� tan���, to the ®rst order in "n, we have

sin('n ÿ �) � "n sin(2�)=2. Substituting the expressions

given above for � and 'n and using the aforesaid properties of

Fn and �, we have
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Figure 3
(a), (b) Reciprocal-space sections of decagonal Al±Co±Ni (Cervellino et
al., 2001) corresponding to the structure projections on the (x1, x3) and
(x2, x3) planes (Fig. 2), respectively. The size of a dot is proportional to the
experimentally observed intensity of the re¯ection it marks.

5 For notational conciseness, we will drop in the following the functional
dependence from (x, z, m). Notice that the vn vector sequences have a `natural'
minimal scale (m � 3, cf. footnote 4).
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"n � ��3ÿ ���Fn�m ÿ �n�m�=��n�m�
� ��2� ÿ 1�Fn�m ÿ �n�m�=��n�m�
� ��Fn�m ÿ Fn�m ÿ Fn�mÿ1�=��n�m�
� ÿ��ÿ1=��Fn�m � Fn�mÿ1�=��n�m�
� �ÿ1�n�m�1=��2�n�m�:

Here we used also the derived properties 1=� � � ÿ 1 and

�ÿ1=��n � Fn�ÿ1=�� � Fnÿ1 (this is because ÿ1=� is the

conjugate of � as a Pisot number). As a result, the atoms on

the tips of the vn vectors will come exponentially closer to the

net plane as n!1. The largest deviations from the planes

occur for n � 1; for both the (01101) and ��1�1112� planes, this is

smaller than 0.14 AÊ .

2.3. Inclined net planes and growth of DQC

The equilibrium morphology of crystals can be understood

and predicted from the knowledge of the atomic planes with

the lowest speci®c surface energy. These atomic planes

Figure 4
Average structures of decagonal Al±Co±Ni (Cervellino et al., 2001) projected onto (a), (b) the (x1, x3) plane and (c), (d) the (x2, x3) plane. The average
structures ASÿ1 and ASÿ2 are shown in (a), (c) and (b), (d), respectively. The traces of net planes perpendicular to these planes are shown.



correspond to dense net planes containing important periodic

bond chains (PBC) according to the PBC theory (cf. Hartman,

1987, and references therein). PBC are uninterrupted chains

of strong atomic bonds. To understand the morphology of

quasicrystals, the PBC theory can be applied in a modi®ed

form ± quasiperiodic bond chains (QBC) instead of periodic

bond chains have to be considered. This has been performed

to some extent by Ho et al. (1987) who developed a theory of

facetting in bond-oriented glasses and icosahedral quasicrys-

tals based on perfect bond-oriented systems (PBOS), by

Janssen et al. (1989), who discussed how to characterize the

morphological importance of crystal growth faces, by Kremers

et al. (1995), Heijmen et al. (1995) and van Smaalen (1993,

1999), who studied the morphology of all kinds of aperiodic

crystals. Toner (1990) studied theoretically growth and kinetic

roughening of icosahedral quasicrystals, i.e. their non-equili-

brium growth morphology. According to Liu et al. (2000), the

growth mechanism of DQC should be similar to that of regular

crystals along the periodic direction and similar to that of

icosahedral phases in the quasiperiodic plane. They found a

roughening transition temperature where the lateral growth

mode changed into a continuous growth mode, and the growth

pattern changed from a facetted to an equiaxial structure.

Employment of the modi®ed PBC theory makes it easy to

®nd the most probable face form describing the decaprism

faces. The strongest Bragg re¯ections indicate f100�10g or

f11�1�10g and f�1�1�1�10g as most probable candidates. The planes

�100�10� and �11�1�10� run perpendicular to x2 and ��1�1�1�10�
perpendicular to x1. Since the shortest bonds of length

ar � 2:432 AÊ within the quasiperiodic layers, and also those

linking neighbouring quasiperiodic layers (2.518 AÊ ) are

parallel to the (x1,x3) plane, the strongest PBC are parallel

to f100�10g and f11�1�10g. This agrees with the experimental

observations.

Since inclined net planes are never perfectly ¯at, the adding

of atoms during the growth process is energetically favourable

compared with starting a new net plane on a ¯at surface.

Consequently, owing to their high growth rate, these facets can

only be observed on very tiny non-equilibrium crystals. It is

remarkable, however, that the base face (00001) and the facets

inclined to [00001] are of comparable size in Fig. 1. Thus, the

speci®c surface energies of these faces seem to be of the same

order of magnitude. Any perturbation or termination of a net

plane containing PBC increases its energy. Therefore, the

energy should show a minimum for a system with the

maximum number of undisturbed net planes. In the case of

bipyramidal face forms of the type fh1h2h3h4h5g with h5 6� 0,

this is only possible for quasiperiodically ordered structures

without any stacking faults along the periodic direction.

Indeed, no disorder in the periodic stacking of quasiperiodic

layers (in diffraction patterns indicated by diffuse streaking

parallel to the tenfold axis) has ever been observed in stable

DQC. Much more, even the existence of only two sets of

inclined net planes being orthogonal to each other is suf®cient

to force quasiperiodicity due to the scaling symmetry

discussed above.

Each of the two sets of periodic net plane stacks, (01101)

and ��1�1112�, contains all atoms of the DQC. We can generate

the vector sequences vn by applying the Fibonacci substitution

rule (si! li, li! li si) starting from the appropriate leading

terms. This substitution rule corresponds to ideal quasiper-

iodic long-range order. If we consider only one set of net

planes, then any ordering of si and li units would be acceptable

because the deviations would anyway remain small. Consid-

ering both sets of planes and all symmetrically equivalent sets

too, only quasiperiodic ordering is compatible with a maxi-

mally ¯at net plane ensemble. This can be easily understood in

terms of the average structure approach. Any deviation from
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Figure 5
(a) Structure of the net plane (0�1�101). (b) Quasiperiodic atomic layer of
decagonal Al±Co±Ni with x3 � 1=4 (Cervellino et al., 2001). Some
geometrical structure motifs and unit lengths are marked.
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quasiperiodicity increases the size of the atomic surfaces and

therewith also the size of its projected images. Strongly over-

lapping projected atomic surfaces lead to a more or less

continuous probability density distribution in the average

structure and the concept of net planes loses its meaning.

3. Conclusions

In a strict sense, there are no net planes in DQC inclined to the

tenfold axis but the net planes of their periodic average

structures. This has the consequence that atomic layers

inclined to the tenfold axis are always slightly puckered. Since

inclined net planes link periodic with quasiperiodic directions

in decagonal quasicrystals, they may play a crucial role in

establishing quasiperiodic long-range order. Any randomness

destroys locally the planarity of net planes. A random tiling-

based quasicrystal would not show any net planes at all.
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